Chiral Analysis of Synthetic Peptides: High Performance Liquid Chromatography of Diastereoisomeric Carbamoyl Esters derived from N-Terminal Cleavage

John S. Davies,* Christine Enjalbal and Gareth Llewellyn

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

A cleavage routine for chiral analysis has revealed that the N-terminal residue in model dipeptides, after derivatisation with a chiral isocyanate reagent, can be cleaved off as the *N*-carbamoyl ester under relatively mild conditions (MeOH/SOCl₂/60 °C for 3 h) free from inherent problems of racemisation. The diastereoisomeric carbamoyl amino acid esters produced can be separated and identified by HPLC. The methodology has been optimised for a number of representative amino acids, including tyrosine, histidine, methionine and tryptophan which have side-functions capable of complicating the procedure.

The chemical synthesis of peptides and small proteins has evolved to become a routine and accessible goal in the hands of expert practitioners. There is a vast literature on peptide synthesis, as can be gleaned from recent reviews.¹ In the development of satisfactory syntheses, racemisation of the activated residue during the coupling stages has always been an undesirable complication in the making of biologically active peptides. Attempts over many years to eliminate racemisation are reflected by the number of racemisation tests² which have been developed to monitor the 'racemisation potential' of the chosen reaction, conditions and reagents. Consequently, in contemporary synthetic routines the stepwise addition of 'urethane'-protected amino acid residues, suitably activated by proven coupling agents, has served to reduce the chances of loss of chiral integrity.³ However, certain residues, such as histidine⁴ and cysteine⁵ still demand caution, and fragment condensation using a chiral residue at the C-terminal position can still be susceptible to racemisation. Difficulties with the linking of the first amino acid residue to anchor links in solid phase peptide synthesis are still deemed to be vulnerable to racemisation.⁶

The utmost in chiral quality control would be a check on the chiral integrity of the added amino acid residue after it has undergone attachment to its neighbouring residue. It is to this end that we have undertaken an assessment of whether an Nterminal analysis technique based on the conventional 'Edman' sequencing technique could be developed. A procedure offering a variation on this philosophy has also been reported ⁷ recently, where the 'Edman' cleavage has been used to generate peptides whose N-terminal residues are then analysed via coupling with 5-fluoro-2,4-dinitro-L-phenylalanine. The latter is a modification of Marfey's reagent, which has also been used ⁸ as a precolumn derivatising agent for HPLC separation of diastereoisomeric amino acid derivatives. In previous publications we reported^{9,10} that the use of chiral isothiocyanate reagents directly analogous to the Edman reagents¹⁰ gave rise to thiazolinone intermediates that were inherently chirally unstable. Replacing the isothiocyanate by an isocyanate overcame this problem, but only limited success⁹ was achieved in developing a satisfactory separation of diastereoisomeric hydantoin derivatives. The yields of hydantoin derivatives were also poor. In a development related to our procedure, König and co-workers¹¹ investigated the cleavage of N-alkylcarbamoyl derivatised peptides, to their corresponding Nterminal carbamoyl esters using propan-2-ol/hydrochloric acid for cleavage, as summarised in Scheme 1. The released carbamoyl amino acid esters were readily analysed and their chiral purity detected on chiral GC capillary columns. Up to 10

residues could be sequenced, but some amino acid residues such as lysine, histidine, arginine and tryptophan failed to give sufficiently volatile derivatives.

The thrust of our current approach is summarised in Scheme 2 and includes (a) an assessment of the separation of chiral

isomers of carbamoyl amino acid esters on HPLC columns, (b) optimisation of the cleavage conditions and (c) the effect of reactive side chains on the analysis.

Table 1 Separation of PhNHCONHCH(R')CO₂CH₃ on chiral columns. Mobile phase 10% PrⁱOH-cyclohexane, flow rate 1 cm³ min⁻¹, detector wavelength 258 nm.

	α					
	10 °C		19 °C		27 °C	
R′	Apex AU	Apex AL	Apex AU	Apex AL	Apex AU	Apex AL
CH3	1.70	1.26	n.s. ^a	1.37	n.s.	1.14
$CH_2CH(CH_3)_2$	n.s.	1.35	n.s.	1.44	n.s.	1.38
CH2	1.33	1.40	n.s.	1.68	n.s.	1.66

^a No separation.

Table 2 HPLC Analysis of (R)- α -methylbenzylcarbamoyl DL-amino acid methyl esters

				Separation	1
Мо	bile phase	Residue	Retention time/min	α	R _s
Me	OH-H ₂ O 60:40	L-Val/D-Val	10.85/11.49	1.07	0.82
	-	L-Trp/D-Trp	13.34/14.03	1.05	0.73
		L-Leu/D-Leu	14.42/16.30	1.15	1.07
		L-Phe/D-Phe	16.64/18.23	1.11	1.62
		L-His/D-His	32.04/33.61	1.05	0.83
		$(N^{\alpha}, N^{\text{Im}}\text{-disubstituted})$			
		L-Met/D-Met	11.29	1.00	0.00
		L-Lys/D-Lys	30.76	1.00	0.00
		$(N^{\alpha}, N^{\varepsilon}$ -disubstituted)			
Me	OH-H ₂ O 40:60	L-Ala/D-Ala	21.42/22.46	1.06	0.87
Me	CN-H ₂ O 40:60	D-Tyr/L-Tyr	8.82/9.25	1.06	0.57
Me	OH–H ₂ O 20:80	D-Ser/L-Ser	19.04/20.64	1.09	0.89

Results and Discussion

Separation of the Carbamoyl Amino Acid Isomers on HPLC Columns.—Key to the methodology is the need for an efficient means of assessing the chiral purity of the carbamoyl esters 1. When the derivatising agent was phenyl isocyanate (*i.e.* R = Phin Scheme 2), the derived carbamoyl esters were analysed on Pirkle-type chiral HPLC columns.¹² Separations achieved for L and D enantiomers have been expressed in Table 1 in terms of the selectivity factor α , and resolution R_s defined as

$$\alpha = \frac{T_1 - T_0}{T_2 - T_0}; \qquad R_s = 2 \times \frac{T_2 - T_1}{l_1 + l_2}$$

where T_1 and T_2 represent retention times (in min) of the enantiomeric carbamoyl esters and T_0 the retention time of the solvent, and l_1 , l_2 are the widths (in min) of the first and second peaks eluted respectively.

The Apex AL column with chiral ligand 2 proved superior to the Apex AU column (chiral ligand 3) in the three examples studied. But in general the peaks were extremely broad and

could never compare satisfactorily with the separation achieved by the combination of a chiral carbamoyl derivative [R = (R)-Ph-CH(CH₃)-NHCO or (S)-Naphthyl-CH(CH₃)-NHCO in Scheme 2] on a reversed-phase column.

Tables 2 and 3 summarise the separations of the diastereoisomers on an ODS C_{18} column. All the examples studied, except lysine, could be separated, although methionine required the extra resolving power of the naphthylethyl derivative. Amino acid residues with polar side chains were eluted more rapidly than residues with more 'hydrophobic' side chains and consequently base-line resolution of diastereoisomers in the former cases was more difficult.

Optimisation of the Cleavage Conditions.—Preliminary studies had shown that HPLC traces derived from the cleavage of dipeptide esters could be explained by the reaction sequence summarised in Scheme 3. Optimisation amounted to maximising the yield of the carbamoyl ester 4 and minimising its further conversion to a hydantoin 5 and another compound giving a late peak on HPLC, which never interfered with the analysis, but nevertheless seemed always to be prominent at retention time R_t ca. 25 min. Hydantoin formation was favoured during hydrolysis of the carbamoyl peptide by dilute hydrochloric acid⁹ and by elevated temperatures. Controlling the conditions to methanol-thionyl chloride at 60 °C for 3 h ensured complete cleavage of the carbamoyl dipeptide esters in all cases with only minimal conversion to hydantoin.

Since most runs were monitored utilising small quantities, it proved difficult to characterise the delayed peak at $R_t ca. 25$ min. However, a larger scale study on the (R)-(+)- α -methylbenzylhydantoin of glycine (5, R = H) showed that when this hydantoin was subjected to the optimised cleavage conditions

Table 3 HPLC Analysis of (R)- α -methylbenzylcarbamoyl DL-dipeptide methyl esters and (S)-1-(1-naphthyl)ethylcarbamoyl-methionine and -methionylglycine methyl esters

			Separation	
 Mobile phase	Residues	Retention time/min	α	R _s
	(R) - α -methylbenzylcarbamoyl derivatives of:			
MeOH–H ₂ O 60:40	-L-Val-Gly-OMe -L-Trp-Gly-OMe -L-Leu-Gly-OMe -D-Leu-Gly-OMe -L-Phe-Gly-OMe -D-Phe-Gly-OMe	7.61 12.25 12.20 12.98 13.04 13.04	1.08 1.00	0.77 0.00
MeOH-H ₂ O 40:60	-L-His-Gly-OMe (N ^a , ^{Im} -disubstituted) -L-Met-Gly-OMe -L-Ala-Gly-OMe -D-Ala-Gly-OMe	25.63 8.82 17.61 18.56	1.06	0.75
MeCN-H ₂ O 40:60	-L-Tyr-Gly-OMe (N°,O-disubstituted)	14.16		
MeOHH ₂ O 60:40	L-Ser-Gly-OMe (N°,O-disubstituted)	15.52		
MeCN-H ₂ O 40:60	L-Ser-Gly-OMe (N°,O-disubstituted)	20.53		
	(S)-1-(1-naphthyl)ethylcarbamo derivatives of:	yl		
$MeOH-H_2O 60:40$	-D-Met-OMe/L-Met-OMe	25.03/28.18	1.13	1.96
$MeOH-H_2O 60:40$	-DMet-Gly-OMe -LMet-Gly-OMe	21.13	1.07	0.76
MeOH-H ₂ O 70:30	-DMet-Gly-OMe -LMet-Gly-OMe	10.47 11.30	1.09	0.98

(MeOH/SOCl₂/60 °C/3 h) a peak at $R_t = 28$ min was obtained, which could be attributed to the di-*N*-substituted hydantoin **6**, R = H. A plausible summary of events is given in Scheme 4, and was supported by an NMR analysis, which showed that in the 3-4 ppm region of the spectrum, signals reminiscent of a diastereoisomeric mixture were present, explained by the racemisation of the PhCHCH₃ centre before it re-attacks the hydantoin ring. This, at present, is our most plausible explan-

ation for the later HPLC peak, which would be expected to be slightly different for each amino acid.

The Effect of Reactive Side-chains on the Analysis.—The carbamoyl dipeptide esters without a 'reactive' side chain could be readily synthesised in high purity, as shown by NMR and sharp single peaks on HPLC, by reacting the corresponding dipeptide methyl esters with one mole equivalent of (R)- α -methylbenzyl isocyanate. The optimised conditions of cleavage gave the derived (R)- α -methylbenzylcarbamoyl amino acid methyl esters in good yield for the leucyl, alanyl and phenylalanyl residues. Within the 3 h reaction time the valyl residue was a little more sluggish, giving a 90% cleavage yield. The tryptophyl residue could be analysed successfully on the basis of only a 20% yield of the carbamoyl tryptophyl ester being present (owing to acid breakdown).

For the methionyl residue, both α -methylbenzyl- and 1-(1naphthyl)ethylcarbamoylmethionylglycine methyl esters were prepared, as cleavage of the latter gave a superior derivative for chiral analysis on the HPLC columns. More side reactions occurred in this case, attributed to oxidation and alkylation of the side-chain thioether group. These did not hamper the chiral analysis, provided efficient washing of the column was carried out after each run.

It was proposed that under analytical conditions, the side chains of tyrosine, serine and histidine might react with two moles of the derivatising agent, (R)-(+)-methylbenzyl isocyanate. With two mole equivalents of the isocyanate, the carbamoyl dipeptide esters 7–9 were readily synthesised. The possible

cleavage pathways are outlined in Scheme 5. For tyrosine the chiral analysis could be based on the HPLC of 10, since the urethane side-chain was cleaved in the methanolic conditions to yield 10 and not 11.

The histidyl residue could be analysed as the dicarbamoylhistidyl methyl ester 12, giving unambiguous evidence that there was no racemisation during the cleavage of this highly susceptible residue. For the seryl residue the carbamoyl-derivatised side-chain remained intact (as 13) for the analysis, in contrast to the tyrosine case. Unfortunately, the diastereoisomeric disubstituted seryl methyl ester could not be resolved on the HPLC columns under all conditions tried, and needs further optimisation.

In the majority of the cases studied here, there is no doubt that the *N*-carbamoyl amino acid methyl esters lend themselves to a sensitive method for chiral analysis. When side reactions do occur in the series studied, they do not interfere in the region of the HPLC trace where the esters are eluted. No racemisation of the N-terminal residues could be detected in any of the samples studied.

Experimental

¹H NMR spectra were recorded at 250 MHz on a Bruker WM250 spectrometer using Me₄Si as internal standard. Peak multiplicities are reported as s = singlet, d = doublet, t =triplet, q = quartet and m = multiplet. Mass spectra were determined using a VG Analytical VG 12-250 instrument for low resolution EI and CI measurements. Accurate masses were measured on a VG Analytical ZAB-E instrument at the SERC Mass Spectrometer Centre, Swansea. C, H and N microanalyses were carried out at the University of Wales College, Cardiff. Optical rotations were measured on a Perkin-Elmer 141 automatic polarimeter using the Na D line (589 nm) or the Hg line (546 nm) and are in 10⁻¹ deg cm² g⁻¹. M.p.s were measured on a Gallenkamp hot-stage apparatus and are uncorrected.

Scheme 5

HPLC measurements were carried out using LDC/Milton Roy instrumentation. Columns had dimensions of 25×0.43 cm and the flow rate was 1 cm³ min⁻¹ at pressures of 3000-4000 p.s.i. The chiral columns (Apex AL and Apex AU) were purchased or loaned from Jones Chromatography Ltd. TLC was carried out on Merck silica gel $60F_{254}$ or on Fluka alumina UV₂₅₄ plates. Either ethyl acetate-chloroform or ethyl acetatelight petroleum were used for development of the chromatograms. For flash chromatography, alumina (Phase Sep, 100 > mesh) and 15% ethyl acetate in light petroleum (30– 40 °C) were used.

(R)-(+)- α -Methylbenzyl isocyanate (99%) and (S)-(+)-1-(naphthyl)ethyl isocyanate (99%) were used as purchased from Aldrich Chemicals.

Synthesis of Phenylcarbamoyl Amino Acid Methyl Esters.— Each amino acid methyl ester hydrochloride¹³ (1 mmol) was suspended in anhydrous dichloromethane (20 cm³). Triethylamine (1.1 mmol) and phenyl isocyanate (1.1 mmol) were added at 0 °C under stirring. After 15 min the mixture was left at room temperature overnight, under stirring. The reaction mixture was then washed with 1 mol dm⁻³ HCl (10 cm³), saturated aqueous NaHCO₃ (10 cm³) and water (2 × 10 cm³). The organic layer was dried over anhydrous MgSO₄, filtered and evaporated to dryness to produce a white powder, recrystallised from dichloromethane-light petroleum to yield each of the following compounds.

Phenylcarbamoyl-L-alanine methyl ester. M.p. 122–123 °C (65% yield); $[\alpha]_{D}^{20} - 1.8^{\circ}$ (c 0.1 in MeOH) (Found: C, 59.6; H, 6.3; N, 12.5. C₁₁H₁₄N₂O₃ requires C, 59.5; H, 6.3; N, 12.6%); δ_{H} (CDCl₃) 1.38–1.41 (3 H, d, CH₃), 3.72 (3 H, s, OCH₃), 4.52–4.60 (1 H, q, CH), 7.00–7.06 (2 H, m, 2 × NH) and 7.21–7.32 (5 H, m, C₆H₅); m/z (M + H)⁺, 223.

Phenylcarbamoyl-D-alanine methyl ester. M.p. 122–125 °C (70% yield); $[\alpha]_D^{20} + 2.5^\circ$ (*c* 0.1 in MeOH); spectral data as above.

Phenylcarbamoyl-L-leucine methyl ester. M.p. 106 °C (75% yield); $[\alpha]_D^{20} - 23.2^{\circ}$ (c 0.1 in MeOH); δ_H (CDCl₃) 0.92–0.97 (6 H, 2 × d, 2 × CH₃), 1.50–1.69 [3 H, m, CH₂CH(CH₃)₂ overlapping with CH₂CH(CH₃)₂], 3.73 (3 H, s, OCH₃), 4.56–4.62 (1 H, q, CH), 7.03–7.06 (2 H, m, 2 × NH) and 7.22–7.31 (5 H, m, C₆H₅); m/z (M + H)⁺, 265.

Phenylcarbamoyl-D-leucine methyl ester. M.p. 107 °C (72% yield); $[\alpha]_{D}^{20} + 22.3^{\circ}$ (*c* 0.1 in MeOH); spectral data as above.

Phenylcarbamoyl-L-phenylalanine methyl ester. M.p. 112-114 °C (43% yield); $[\alpha]_{D}^{20}$ -19.6° (*c* 0.1 in MeOH) (Found: C, 68.4; H, 6.0; N, 9.4. C₁₇H₁₈N₂O₃ requires C, 68.5; H, 6.0; N, 9.4%); δ_H(CDCl₃) 2.95-3.15 (2 H, q, CHCH₂-Ph), 3.69 (3 H, s, OCH₃), 4.79-4.84 (1 H, q, CH), 5.6-6.0 (2 H, v br, 2 × NH) and 6.99-7.33 (10 H, m, 2 × C₆H₅); *m/z* (M + H)⁺, 299.

Phenylcarbamoyl-D-phenylalanine methyl ester. M.p. 113–114 °C (70% yield); $[\alpha]_D^{20}$ +18.9° (c 0.1 in MeOH); other spectral data as above.

Synthesis of (\mathbf{R}) - α -Methylbenzylcarbamoyl Amino Acid Methyl Esters.—Starting with the appropriate amino acid methyl ester hydrochloride¹³ (1.0 mmol), suspended in anhydrous dichloromethane, followed by addition of triethylamine (1.1 mmol) and (R)-(+)- α -methylbenzyl isocyanate (1.1 mmol) under stirring at room temperature, the following were prepared using the same work up as for the phenylcarbamoyl analogues.

(R)- α -Methylbenzylcarbamoyl-L-alanine methyl ester. M.p. 101–102 °C (65% yield); $[\alpha]_{D}^{20} + 3.8^{\circ}$ (c 0.1 in MeOH), $[\alpha]_{346}^{20} + 40.0^{\circ}$ (c 0.1 in CH₂Cl₂); δ_{H} (CDCl₃) 1.25–1.28 [3 H, d, CHCH₃(Ala)], 1.37–1.39 (3 H, d, PhCHCH₃), 3.65 (3 H, s, OCH₃), 4.35–4.44 (1 H, q, NHCHCO), 4.78–4.86 (1 H, q, PhCHCH₃), 5.67 (2 H, br, 2 × NH) and 7.17–7.30 (5 H, m, C₆H₅); m/z (M + H)⁺, 251.

(R)- α -Methylbenzylcarbamoyl-D-alanine methyl ester. M.p. 118–120 °C (63% yield); other spectral data as above.

(R)-α-methylbenzylcarbamoyl-L-leucine methyl ester. M.p. 92– 93 °C (75% yield); $[\alpha]_{D}^{20}$ +4.1° (c 0.1 in MeOH), $[\alpha]_{346}^{22}$ +26.6° (c 0.1 in CH₂Cl₂); δ_{H} (CDCl₃) 0.80–0.85 [6 H, 2 d, CH(CH₃)₂], 1.25–1.52 [6 H, m, overlapping CH₂CH(CH₃)₂, CH₂CH(CH₃)₂], and PhCHCH₃], 3.64 (3 H, s, OCH₃), 4.43 (1 H, t, NHCHCH₂), 4.79 (1 H, q, PhCHCH₃), 5.35 (1 H, br, NH), 5.62 (1 H, br, NH) and 7.17–7.30 (5 H, m, C₆H₅); m/z (M + H)⁺, 293.

(R)- α -Methylbenzylcarbamoyl-D-leucine methyl ester. M.p. 125–126 °C (61% yield); other spectral data as above.

(R)- α -Methylbenzylcarbamoyl-DL-phenylalanine methyl ester. M.p. 88–93 °C (70% yield); $\delta_{\rm H}$ (CDCl₃) 1.35–1.39 (3 H, q, PhCHCH₃), 2.96–2.98 (2 H, d, CH₂Ph), 3.61–3.63 (3 H, 2 s, OCH₃), 4.69–4.71 (2 H, q, overlapping PhCHCH₃ and NHCHCO), 6.93 (2 H, br s, 2 × NH) and 6.93–7.32 (10 H, m, 2 × C₆H₅); m/z (M + H)⁺, 327.

(R)- α -Methylbenzylcarbamoyl-L-valine methyl ester. M.p. 82– 84 °C (67% yield); [α]₂⁰ + 20.2° (*c* 0.1 in MeOH), [α]₅₄₆² + 13.4° (*c* 0.1 in CH₂Cl₂); δ _H(CDCl₃) 0.76–0.88 [6 H, 2 d, CH(CH₃)₂], 1.98–2.06 [1 H, q, CH(CH₃)₂], 3.63 (3 H, s, OCH₃), 4.35–4.37 [1 H, d, CHCH(CH₃)₂], 4.79–4.87 (1 H, q, PhCHCH₃), 5.8–6.0 (2 H, br, 2 × NH) and 7.19–7.30 (5 H, m, C₆H₅); *m/z* (M + H)⁺, 279. (**R**)-α-Methylbenzylcarbamoyl-D-valine methyl ester. M.p. 89– 90 °C (69% yield); other spectral data as above.

(**R**)-α-Methylbenzylcarbamoyl-DL-tryptophan methyl ester. M.p. 142–143 °C (70% yield); $\delta_{\rm H}$ (CDCl₃) 1.25–1.31 (3 H, t, PhCHCH₃), 3.16–3.18 (2 H, t, CHCH₂), 3.55 (3 H, s, OCH₃), 4.68–4.76 (2 H, m, overlapping PhCHCH₃ and NHCH-CO₂CH₃), 5.0–5.2 (2 H, br, 2 × NH), 6.68–7.29 (9 H, m, aromatic protons), 7.45–7.48 (1 H, d, 2-position in indole nucleus) and 8.55–8.65 (1 H, d, 1-NH of indole nucleus); Found: (M + H)⁺, 366.1818. Calc. for C₂₁H₂₄N₃O₃: M + 1, 366.1739.

(R)-α-Methylbenzylcarbamoyl-L-serine methylester. M.p. 123– 124 °C (60% yield); $[\alpha]_{D}^{20}$ +21.0° (c 0.1 in MeOH), $[\alpha]_{346}^{2}$ +49.6° (c 0.1 in CH₂Cl₂); δ_{H} (CDCl₃) 1.38–1.40 (3 H, d, PhCHCH₃), 3.64 (3 H, s, OCH₃), 3.72–3.80 (3 H, m, overlapping CH₂OH and CH₂OH), 4.43 (1 H, s, NHCHCO), 4.80–4.82 (1 H, q, PhCHCH₃), 5.5–6.2 (2 H, br, 2 × NH) and 7.2–7.29 (5 H, m, C₆H₅); Found: M⁺, 266.1267. Calc. for C₁₃H₁₈N₂O₄: M, 266.1267.

(R)- α -Methylbenzylcarbamoyl-D-serine methyl ester. M.p. 113–116 °C (58% yield); other spectral data as above.

(R)-α-Methylbenzylcarbamoyl-L-tyrosine methyl ester. M.p. 143–144 °C (76% yield); $[\alpha]_{D}^{20}$ 0° (c 0.1 in MeOH), $[\alpha]_{346}^{20}$ + 51.6° (c 0.1 in CH₂Cl₂); δ_{H} (CDCl₃) 1.32–1.35 (3 H, d, PhCH-CH₃), 2.86–2.87 (2 H, d, CH₂C₆H₄OH), 3.60 (3 H, s, OCH₃), 4.65–4.68 (2 H, m, overlapping PhCHCH₃ and NHCHCO), 5.34 (1 H, br, NH), 5.56 (1 H, br, NH), 6.59–6.74 (4 H, dd, C₆H₄OH) and 7.17–7.30 (5 H, m, C₆H₅); Found: (M + H)⁺, 343.1568. Calc. for C₁₉H₂₃N₂O₄: M + 1, 343.1579.

(R)- α -Methylbenzylcarbamoyl-D-tyrosine methyl ester. M.p. 157–159 °C (59% yield); $[\alpha]_{20}^{20}$ 0° (c 0.1 in MeOH), $[\alpha]_{546}^{20}$ – 29.9° (c 0.1 in CH₂Cl₂); other spectral data as above.

(R)-α-Methylbenzylcarbamoyl-L-methionine methyl ester. M.p. 103–104 °C (73% yield); $[\alpha]_D^{2D}$ +4.6° (c 0.1 in MeOH), $[\alpha]_{546}^{2G}$ +38.4° (c 0.1 in CH₂Cl₂); $\delta_{\rm H}$ (CDCl₃) 1.42–1.45 (3 H, d, PhCHCH₃), 2.0 (3 H, s, SCH₃), 1.78–2.16 (2 H, m, CH₂CH₂SCH₃), 2.27–2.33 (2 H, t, CH₂CH₂SCH₃), 3.67 (3 H, s, OCH₃), 4.50–4.55 (1 H, q, NHCHCO), 4.75–4.78 (1 H, q, PhCHCH₃), 5.35 (2 H, br, 2 × NH) and 7.21–7.32 (5 H, m, C₆H₅); Found (M + H)⁺, 311.1429. Calc. for C₁₅H₂₃N₂O₃S: M + 1, 311.1351.

(R)- α -Methylbenzylcarbamoyl-DL-methionine methyl ester. M.p. 101–104 °C (75% yield); other spectral data as above.

For amino acids with reactive side chains, the reaction conditions and the work up techniques were as previously described but two mole equivalents of (R)-(+)- α -methylbenzyl isocyanate were used per mole of amino acid methyl ester. Derivatives produced in this way were as follows.

N,^αN^ε-Bis[(R)-α-Methylbenzylcarbamoyl]-L-lysine methyl ester. M.p. 142–144 °C (60% yield); $\delta_{\rm H}([^{2}{\rm H}_{6}]{\rm DMSO})$ 1.16– 1.49 (4 H, m, CH₂CH₂CH₂CH₂NH), 1.33–1.49 (6 H, d, 2 × PhCHCH₃), 1.49–1.65 (2 H, m, CH₂CH₂CH₂), 2.50–2.98 (2 H, m, CH₂NH), 3.62 (3 H, s, OCH₃), 4.09–4.17 (1 H, q, NHCHCO), 4.71–4.77 (2 H, m, 2 × PhCHCH₃), 5.79–5.83 (1 H, t, NH), 6.21–6.30 (2 H, 2 d, 2 × NH), 6.47–6.51 (1 H, d, NH) and 7.20–7.29 (10 H, m, 2 × C₆H₅); Found: (M + H)⁺, 455.2658. Calc. for C₂₅H₃₅N₄O: M + 1, 455.2580.

N, "N^{ϵ}-Bis[(R)- α -Methylbenzylcarbamoyl]-DL-lysine methyl ester. M.p. 119–121 °C (70% yield); other spectral details as above.

N,^aN^{im}-Bis[(R)- α -Methylbenzylcarbamoyl]-L-histidine methyl ester. M.p. 62–64 °C (72% yield); $[\alpha]_{D}^{20} + 2.5^{\circ}$ (c 0.1 in MeOH), $[\alpha]_{546}^{26} + 2.7^{\circ}$ (c 0.1 in CH₂Cl₂); δ_{H} (CDCl₃) 1.29–1.37 (3 H, d, PhCHCH₃), 1.53–1.58 (3 H, d, PhCHCH₃), 2.86–2.88 (2 H, d, CHCH₂), 3.59 (3 H, s, OCH₃), 4.57–4.63 (1 H, q, NHCHCO), 4.65–4.76 (1 H, q, PhCHCH₃), 5.05–5.13 (1 H, q, PhCHCH₃), 5.85–5.92 (1 H, m, NH), 5.99–6.02 (1 H, d, NH), 7.09–7.41 (11 H, d, overlapping 2 × C₆H₅ and imidazole CH),

6.3–7.66 (1 H, d, imidazole CH), 8.05–8.08 (1 H, d, NH); m/z (M + H)⁺, 464.

Synthesis of $(R)-\alpha$ -Methylbenzylcarbamoyl-L-leucylglycine Ethyl Ester.—Much of the fundamental work on optimisation was carried out on this compound and it was therefore synthesised especially for this purpose.

L-Leucylglycine ethyl ester hydrochloride¹³ (0.32 mmol) in anhydrous dichloromethane (10 cm³), was treated with triethylamine (0.4 mmol) and (R)-(+)- α -methylbenzyl isocyanate (0.4 mmol) under stirring at room temperature. The reaction mixture was left overnight, then washed with 1 mol dm⁻³ HCl (10 cm³), saturated aqueous NaHCO₃ (10 cm³) and water $(2 \times 10 \text{ cm}^3)$. After drying, the organic layer on evaporation yielded white crystals (66% yield). Recrystallisation from dichloromethane-light petroleum gave (R)-a-methylbenzylcarbamoyl-L-leucylglycine ethyl ester, m.p. 177 °C [Found: C, 62.6; H, 8.1; N, 11.7, C₁₉H₂₉N₃O₄ requires C, 62.7; H, 8.0; N, 11.6%; δ_H(CDCl₃) 0.87–0.95 [6 H, 2 d, CH₂CH(CH₃)₂], 1.19–1.24 (3 H, t, OCH₂CH₃), 1.37-1.39 (3 H, d, PhCHCH₃), 1.42-1.63 [3 H, m, $CH_2CH(CH_3)_2$ overlapping with $CH_2CH(CH_3)_2$], 3.56-3.88 (2 H, m, NHCH₂CO), 4.06–4.15 (2 H, q, OCH₂CH₃), 4.40 (1 H, t, NHCHCO), 4.77-4.79 (1 H, q, PhCHCH₃), 5.93 (2 H, m, $2 \times NH$), 7.12–7.27 (5 H, m, C₆H₅) and 7.57 (1 H, m, NH); m/z $(M + H)^+, 364.$

General Synthesis of the (R)- α -Methylbenzylcarbamoyldipeptide Methyl Esters.—These were synthesised as for the dipeptide ethyl ester derivative above, but using the dipeptide methyl ester hydrochlorides ¹³ as starting material. The following esters were prepared.

(R)-α-Methylbenzylcarbamoyl-L-alanylglycine methyl ester. M.p. 212–213 °C (65% yield); $\delta_{\rm H}$ (CDCl₃) 1.26–1.28 (3 H, d, CHCH₃), 1.37–1.39 (3 H, d, PhCHCH₃), 3.69 (3 H, s, OCH₃), 3.89–3.92 (2 H, d, NHCH₂CO), 4.32–4.34 (1 H, q, NHCHCO), 4.82–4.85 (1 H, q, PhCHCH₃), 7.19–7.20 (5 H, m, C₆H₅) and 7.98 (1 H, t, NH).

(R)- α -Methylbenzylcarbamoyl-DL-alanylglycine methyl ester. M.p. 201–203 °C (70% yield); other spectral data similar to above.

(R)- α -Methylbenzylcarbamoyl-L-leucylglycine methyl ester. M.p. 151–153 °C (75% yield); $\delta_{\rm H}$ (CDCl₃) 0.85–0.93 [6 H, 2 d, CH(CH₃)₂], 1.32–1.35 (3 H, d, PhCHCH₃), 1.48–1.64 [3 H, m, overlapping CH₂CH(CH₃)₂ and CH₂CH(CH₃)₂], 3.58 (3 H, s, OCH₃), 3.36–3.78 (2 H, m, NHCH₂CO), 4.50–4.52 (1 H, q, PhCHCH₃), 4.74–4.80 (1 H, t, NHCHCO), 6.09–6.11 (1 H, d, NH), 6.23 (1 H, br, NH), 7.09–7.27 (5 H, m, C₆H₅) and 8.08–8.13 (1 H, t, NH); m/z (M + H)⁺, 350.

(R)- α -Methylbenzylcarbamoyl-DL-leucylglycine methyl ester. M.p. 157–159 °C (73% yield); other spectral data similar to above.

(R)-α-Methylbenzylcarbamoyl-L-phenylalanylglycine methyl ester. M.p. 217–218 °C (67% yield); $\delta_{\rm H}$ (CDCl₃) 1.25–1.38 (5 H, m, PhCHCH₃ overlapping with CH₂Ph), 3.61 (3 H, s, OCH₃), 3.65–3.70 (2 H, m, NHCH₂CO), 4.69–4.73 (2 H, m, overlapping PhCHCH₃ and NHCHCO), 5.60–6.20 (2 H, br, 2 × NH), 7.10–7.25 (10 H, m, 2 × C₆H₅) and 7.46 (1 H, s, NH); *m*/*z* (M + H)⁺, 384.

 $(R)-\alpha$ -Methylbenzylcarbamoyl-D-phenylalanylglycine methyl ester. M.p. 207–209 °C (58% yield); other spectral data as above.

(R)-α-Methylbenzylcarbamoyl-L-valylglycine methyl ester. M.p. 224–225 °C (65% yield); $\delta_{\rm H}$ (CDCl₃) 0.88–0.96 [6 H, 2 d, CH(CH₃)₂], 1.38–1.41 (3 H, d, PhCHCH₃), 2.10–2.12 [1 H, q, CH(CH₃)₂], 3.62 (3 H, s, OCH₃), 3.86–3.88 (2 H, d, NH-CH₂CO), 4.18–4.23 (1 H, q, PhCHCH₃), 4.81–4.87 (1 H, t, NHCHCO), 6.08–6.11 (1 H, d, NH), 6.42–6.46 (1 H, d, NH), 7.17–7.30 (5 H, m, C₆H₅) and 7.83 (1 H, m, NH); *m*/z (M + H)⁺, 336. (R)-α-Methylbenzylcarbamoyl-L-tryptophylglycine methyl ester. M.p. 120–122 °C (70% yield); $\delta_{\rm H}$ (CDCl₃) 1.30–1.32 (3 H, d, PhCHCH₃), 3.11–3.13 (2 H, d, CHCH₂), 3.55–3.58 (5 H, m, overlapping OCH₃ and NHCH₂CO), 4.60 (1 H, t, NHCHCO), 4.74–4.76 (1 H, q, PhCHCH₃), 5.8–6.0 (2 H, br, 2 × NH), 6.87 (1 H, s, NH), 7.00–7.29 (9 H, m, aromatic protons), 7.48–7.51 (1 H, d, 2-H indole nucleus) and 8.56 (1 H, s, 1-H indole nucleus); m/z (M + H)⁺, 423.

(R)-x-Methylbenzylcarbamoyl-L-methionylglycine methyl ester. M.p. 174–176 °C (72% yield); $\delta_{\rm H}$ (CDCl₃) 1.36–1.39 (3 H, d, PhCHCH₃), 1.88–2.02 (2 H, m, CH₂CH₂SCH₃), 2.06 (3 H, s, SCH₃), 2.45–2.51 (2 H, t, CH₂CH₂SCH₃), 3.64 (3 H, s, OCH₃), 3.54–3.89 (2 H, 2 d, NHCH₂CO), 4.57–4.62 (1 H, t, NHCHCO), 4.73–4.78 (1 H, q, PhCHCH₃), 7.16–7.27 (5 H, m, C₆H₅) and 7.79 (1 H, s, NH); m/z (M + H)⁺, 368.

N^a,N^{im}-Bis[(R)-α-Methylbenzylcarbamoyl]-L-histidylglycine methyl ester. This compound was prepared using the standard methodology but more than two mole equivalents of the isocyanate reagent were used to give white crystals, m.p. 157– 158 °C (63% yield); $\delta_{\rm H}([^{2}{\rm H_{6}}]{\rm DMSO})$ 1.25–1.28 (3 H, d, PhCHCH₃), 1.49–1.52 (3 H, d, PhCHCH₃), 2.50 (2 H, s, CHCH₂), 3.58 (3 H, s, OCH₃), 3.78–3.81 (2 H, m, NHCH₂CO), 4.41–4.46 (1 H, t, CHCH₂), 4.67–4.73 (1 H, q, PhCHCH₃), 4.99– 5.05 (1 H, q, PhCHCH₃), 6.01–6.10 (1 H, d, NH), 6.61–6.64 (1 H, d, NH), 7.18–7.41 (10 H, m, 2 × C₆H₅), 7.45 (1 H, s, imidazole CH), 8.21 (1 H, s, imidazole CH), 8.23–8.33 (1 H, t, NH) and 8.71–8.74 (1 H, d, NH).

N^a,O-Bis[(R)-α-Methylbenzylcarbamoyl]-L-tyrosylglycine methyl ester. This compound was prepared using the standard method but more than two mole equivalents of the isocyanate reagent were used to give white crystals, m.p. 129–132 °C (51% yield); $\delta_{\rm H}$ (CDCl₃) 1.23–1.30 (3 H, d, PhCHCH₃), 1.26–1.33 (3 H, d, PhCHCH₃), 2.59–2.91 (2 H, m, CHCH₂), 3.62 (3 H, s, OCH₃), 3.54–3.91 (2 H, m, NHCH₂CO), 4.13–4.48 (1 H, m, NHCHCO), 4.50–4.84 (2 H, m, 2 × PhCHCH₃), 5.96–6.14 (2 H, m, 2 × NH), 6.40–6.50 (2 H, d, 2 × NH), 6.61–7.04 (4 H, dd, CH₂C₆H₄O) and 7.10–7.46 (10 H, m, 2 × C₆H₅).

N^a,O-Bis[(R)- α -Methylbenzylcarbamoyl]-L-serylglycine methyl ester. This compound was also synthesised using excess isocyanate reagent to give an uncrystallisable oil (yield 63%); $\delta_{\rm H}({\rm CDCl}_3)$ 1.43–1.46 (3 H, d, PhCHCH₃), 1.56–1.59 (Ph-CHCH₃), 3.62–3.66 (5 H, m, overlapping NHCH₂CO and OCH₃), 4.03–4.07 (1 H, q, NHCHCO), 4.69–4.80 (2 H, q, 2 × PhCHCH₃), 4.82 (2 H, m, 2 × NH), 5.16 (2 H, m, 2 × NH) and 7.13–7.39 (10 H, m, 2 × C₆H₅).

Synthesis of (S)-1-(1-Naphthyl)ethylcarbamoyl Amino Acid and Dipeptide Methyl Esters.—The appropriate methyl ester hydrochloride (1 mmol) was suspended in anhydrous dichloromethane, then triethylamine (1.1 mmol) and (S)-(+)-1-(1naphthyl)ethyl isocyanate (1.2 mmol) were added under stirring at room temperature. The reaction mixture was left overnight, then washed in turn with 1 mol dm⁻³ HCl (10 cm³), saturated aqueous NaHCO₃ (10 cm³) and water (2 × 10 cm³). Work up involved the same procedure as described before to yield a white solid which was recrystallised from dichloromethane–light petroleum. Compounds prepared were as follows.

(S)-1-(1-Naphthyl)ethylcarbamoyl-DL-methionine methyl ester. M.p. 108–110 °C (75% yield); $\delta_{\rm H}$ (CDCl₃) 1.47–1.58 (3 H, 2 d, C₁₀H₇CHCH₃), 1.57–1.59 (3 H, 2 s, SCH₃), 1.79–2.06 (2 H, m, CH₂CH₂SCH₃), 2.10–2.50 (2 H, br, CH₂SCH₃), 3.60–3.64 (3 H, d, OCH₃), 4.51–4.56 (1 H, m, NHCHCO), 5.55–5.65 (1 H, m, C₁₀H₇CHCH₃) and 7.20–8.12 (7 H, m, C₁₀H₇). Similar diastereoisomeric effects were observed in [²H₆]DMSO with the 2 NH signals appearing at 6.45 and 6.65 ppm. Found: M⁺, 360.1508. Calc. for C₁₉H₂₄N₂O₃S: M, 360.1508.

(S)-1-(1-Naphthyl)ethylcarbamoyl-DL-lysine methyl ester. M.p. 226–230 °C (64% yield); $\delta_{\rm H}([^{2}{\rm H}_{6}]{\rm DMSO})$ 1.43–1.45 (6 H, d, 2 × CHCH₃), 1.11–1.87 [8 H, m, CH(CH₂)₄NH], 3.38 (3 H, s, OCH₃), 4.05–4.09 (1 H, m, NHCHCO), 5.53–5.59 (2 H, q, 2 × C₁₀H₇CHCH₃), 6.43–6.46 (2 H, d, 2 × NH) and 7.46– 8.16 (14 H, m, 2 × C₁₀H₇).

(S)-1-(1-Naphthyl)ethylcarbamoyl-L-methionylglycine methyl ester. M.p. 205–207 °C (61% yield); $\delta_{\rm H}$ (CDCl₃) 1.43–1.45 (3 H, d, CHCH₃), 1.47 (3 H, s, SCH₃), 1.62–2.54 (4 H, br, overlapping CH₂CH₂SCH₃ and CH₂CH₂SCH₃), 3.71 (3 H, s, OCH₃), 3.92–4.05 (3 H, m, overlapping NHCHCO and NHCH₂CO), 5.30–5.61 (1 H, q, C₁₀H₇CHCH₃) and 7.15–8.10 (7 H, m, C₁₀H₇).

(S)-1-(1-Naphthyl)ethylcarbamoyl-D-methionylglycine methyl ester. M.p. $210-212 \degree C$ (57% yield); other spectral data as above.

Synthesis of (R)- α -Methylbenzylhydantoins of some DL Amino Acids.—The corresponding (R)- α -methylbenzylcarbamoyl-DLamino acid methyl ester (1 mmol) was dissolved in purified dioxane (5 cm³) and concentrated HCl (5 cm³) was added under stirring. The solution was heated to 80 °C for 3 h. Evaporation of the reaction mixture to dryness produced an oil in each case, which failed to crystallise. The compounds gave the following spectral data.

(**R**)-α-Methylbenzylhydantoin of DL-leucine. $\delta_{\rm H}$ (CDCl₃) 0.91– 0.98 [6 H, d, CH(CH₃)₂], 1.25–1.45 [1 H, m, CH₂CH(CH₃)₂], 1.64–1.77 [2 H, m, CH₂CH(CH₃)₂], 1.81–1.84 (3 H, d, Ph-CHCH₃), 3.91–3.97 (1 H, m, NHCHCO), 5.29–5.32 (1 H, q, PhCHCH₃), 7.00 (1 H, s, NH) and 7.26–7.45 (5 H, m, C₆H₅). HPLC: $R_{\rm t} = 18.21$ min (MeOH–H₂O, 60:40).

(R)- α -Methylbenzylhydantoin of DL-alanine. δ_{H} (CDCl₃) 1.35– 1.40 (3 H, d, PhCHCH₃), 1.78–1.85 (3 H, d, CHCH₃), 3.94–4.00 (1 H, q, NHCHCO), 5.26–5.36 (1 H, q, PhCHCH₃), 6.45 (1 H, s, NH) and 7.23–7.46 (5 H, m, C₆H₅). HPLC: $R_{t} = 6.33$ min (MeOH–H₂O, 60:40).

(R)- α -Methylbenzylhydantoin of DL-phenylalanine. $\delta_{\rm H}$ (CDCl₃) 1.67–1.70 (3 H, d, PhCHCH₃), 3.62–3.76 (2 H, t, CHCH₂Ph), 4.14–4.20 (1 H, t, NHCHCO), 5.18–5.23 (1 H, q, PhCHCH₃), 6.15–6.19 (1 H, d, NH) and 7.09–7.34 (10 H, m, 2 × C₆H₅). HPLC: $R_{\rm t}$ = 17.80, 18.20 min (MeOH–H₂O, 60:40).

Optimised Cleavage Reaction and Anlaysis of Hydrolysates.— The dried (R)- α -methylbenzylcarbamoyldipeptide methyl ester (5 mg) or (S)-1-(1-naphthyl)ethylcarbamoyl-DL-methionylglycine methyl ester (7 mg) was suspended in anhydrous MeOH (10 cm³) and thionyl chloride (1 cm³) was added to the stirred, cooled mixture. After 15 min the mixture was heated for 3 h at 60 °C. Removal of the solvent under reduced pressure produced a brown residue which was dissolved in dichloromethane, washed with 1 mol dm⁻³ HCl (10 cm³), saturated aqueous NaHCO₃ (10 cm³) and water (2 × 10 cm³). The organic layer was dried (MgSO₄), filtered and evaporated to dryness to yield a brown residue. This was dissolved in anhydrous MeOH for all the analyses. HPLC conditions:—Mobile phases: Mixtures of (a) MeOH-H₂O or (b) MeCN-H₂O + 0.1% TFA. Flow rate 1 cm³ min⁻¹. Detector wavelength 258 nm. Normal temperature of analysis, 20 °C.

References

- M. Bodanszky in Principles of Peptide Synthesis, Springer Verlag, New York, 1984; G. Barany, N. Kneib-Cordonier and D. G. Mullen, Int. J. Pept. Protein Res., 1987, 30, 705; S. B. H. Kent, Ann. Rev. Biochem., 1988, 57, 957, and chapters within Vols. 1-22 of Amino Acids and Peptides, Specialist Periodical Reports, Royal Society of Chemistry (1969-1991).
- 2 D. S. Kemp, in *The Peptides: Analysis, Synthesis, Biology*, eds. E. Gross and J. Meinhofer, Academic Press, New York, 1979, Vol. 1, p. 315; N. L. Benoiton in the same series, 1983, Vol. 5, p. 217; N. L. Benoiton and F. M. F. Chen in *Peptides: Chemistry and Biology*, Proceedings of the 10th American Peptide Symposium, eds. G. Marshall and J. Rivier, ESCOM, Leiden, 1988, p. 152.
- 3 S. B. H. Kent, A. R. Mitchell, G. Barany and R. B. Merrifield, *Anal. Chem.*, 1978, **50**, 155.
- 4 A. R. Fletcher, J. H. Jones, W. I. Ramage and A. V. Stachulski, J. Chem. Soc., Perkin Trans. 1, 1979, 2261; T. Brown, J. H. Jones and J. D. Richards, J. Chem. Soc., Perkin Trans. 1, 1982, 1553.
- 5 J. Kovacs and Y. Hsieh, J. Org. Chem., 1982, 47, 4996.
- 6 E. Atherton, N. L. Benoiton, E. Brown, R. C. Sheppard and B. J. Williams, J. Chem. Soc., Chem. Commun., 1981, 336; R. Steinauer, F. M. F. Chen and N. L. Benoiton, Int. J. Pept. Protein Res., 1989, 34, 295.
- 7 A. Scaloni, M. Simmaco and F. Bossa, Anal. Biochem., 1991, 197, 305.
- 8 G. Szokan, G. Mezo, Z. Majer, I. Schon, O. Nyeki and R. Doelling in *Peptides 1990*, eds. E. Giralt and D. Andreu, ESCOM Leiden, 1991, p. 339.
- 9 J. S. Davies, E. S. Hakeem and A. K. A. Mohammed, in *Peptides* 1982, eds. K. Blaha and P. Malon, Walter de Gruyter & Co., Berlin, 1983, p. 431.
- 10 J. S. Davies and A. K. A. Mohammed, J. Chem. Soc., Perkin Trans. 2, 1984, 1723.
- 11 T. Bolte, D. Yu, H. T. Stuwe and W. A. Konig, Angew Chem. Int. Ed. Engl., 1987, 26, 331; W. A. Konig, I. Benecke, N. Lucht, E. Schmidt, J. Schulze and S. Sievers, J. Chromatogr., 1983, 279, 555.
- 12 J. H. Finn, in Chromatographic Chiral Separations, eds. M. Zief and L. J. Crane, 1988, Marcel Dekker, New York, 1988. p. 355.
- 13 M. Brenner and W. Huber, Helv. Chim. Acta, 1953, 36, 1109.

Paper 2/01102F Received 2nd March 1992 Accepted 13th April 1992